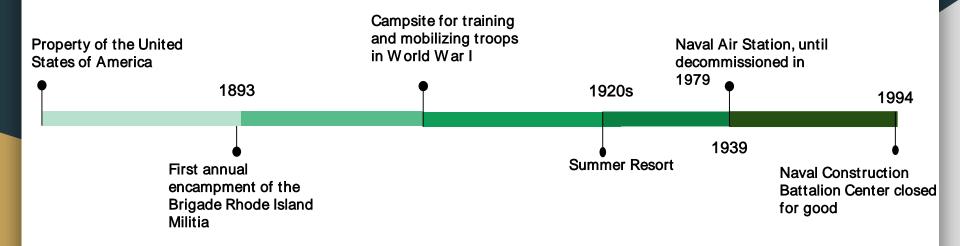


Investigation and Ecological Risk Assessment of Atlantic Shellfish Site

By Group 4: Samantha Mazur, Fernanda Mastroluca, Ally Huffman, Akanksha Patel, and Leila Shwayhat



Site Map

Historic Use

Available Data

- Environmental Science Services (ESS) conducted an Environmental Site Assessment (ESA) in 1994
- ESA identified 13 locations of potential sources of contamination
- A limited number of soil borings and monitoring wells were installed and some laboratory data for soil and groundwater samples are shown in the report

SUMMARY OF SOIL ANALYSES December 23, 1994				SUMMARY OF MISCELLANEOUS ANALYSES (SLUDGE) December 29, 1994						
	ESS-1 (4-6)	ESS-2 (4-	6	ESS-3 (14-16)						
Description	West Side of S Downgradient Aqua Tank Sit	of Former I	Berm of Fuel AST Bldg 63	Downgradient of Bldg 65		CB-65	FT-65	FD-65	CB-63	VAULT 63
TPH-IR (mg/kg)	340		D	29	Description	Catch Basin	Floor	Circular	Catch	Vault
PCBs (mg/kg)	ND	N	D	ND		West of	Trenches	Floor	Basin	North of
VOCs (µg/kg)	ND		48	ND		Bldg 65	in Bldg 65	Drain in Bldg 65	West of Bldg 63	Bldg 63
Acetone Vinyl Chloride Cis-1,2-Dichloroethene	ND	N	10 D	96 22	TPH-IR (mg/kg)	1,400	2,300	NA	96	76,000
Ethylbenzene	ND		D	58	PCBs (mg/kg)	ND	1.0	NA	ND	ND
Total Metals (mg/kg) Arsenic Barium	ND 59	5	5	4	VOCs (µg/kg) Tetrachloroethene	5,680,000	202	32,000	6	ND
Cadmium Chromium	ND 8	1	D 2	ND 10	Trichloroloflouromethane Methylene chloride	ND ND	ND 36	100,000 ND	ND ND	ND ND
Lead Mercury	ND ND	N	D D	ND	Ethylbenzene	ND	ND	ND	ND	625
Selenium Silver	ND		D 2	1 ND	Xylenes SVOCS (µg/kg)	ND	26	ND	ND	1440
SUMM	ARY OF GROU Decemb	NDWATER A er 29, 1994	NALYSES		1,2-Dichlorobenzene Bis(2-ethylhexyl)phthalate	723 2,470	ND ND	NA NA	ND ND	ND ND
	ESS-1	ESS-2	ESS-3	GZA MW-8	Phenanthrene Fluoranthene	ND ND	5,510 6,840	NA	409 464	ND ND
Description	West Side of Site	Within Berm of Former	Downgradi of Bldg 6		Pyrene Chrysene	ND	ND ND	NA	429 587	ND ND
	Downgradient of Aqua Tank Site	Fuel AST West of Bldg 63			Total Metals (mg/kg) Arsenic	ND	ND	NA	ND	ND
TPH-IR (mg/l)	ND	ND	ND	ND	Barium	216	588	NA	52	406
VOCs (µg/l)	NID		NUN	NID	Cadmium Chromium	16 37	24 81	NA NA	ND 10	65 223
Methylene chloride Vinyl Chloride	ND ND	6 ND	ND 850	ND ND	Lead	2,170	17,400	NA	27	2,130
cis-1,2-Dichloroethene	ND	ND	270	ND	Mercury	5.1	0.7	NA	ND	3.1
Toluene	11	ND	ND	ND	Selenium	ND	ND	NA	ND	ND
Ethylbenzene Xylenes	ND	ND	410 120	ND ND	Silver	4	ND	NA	ND	14

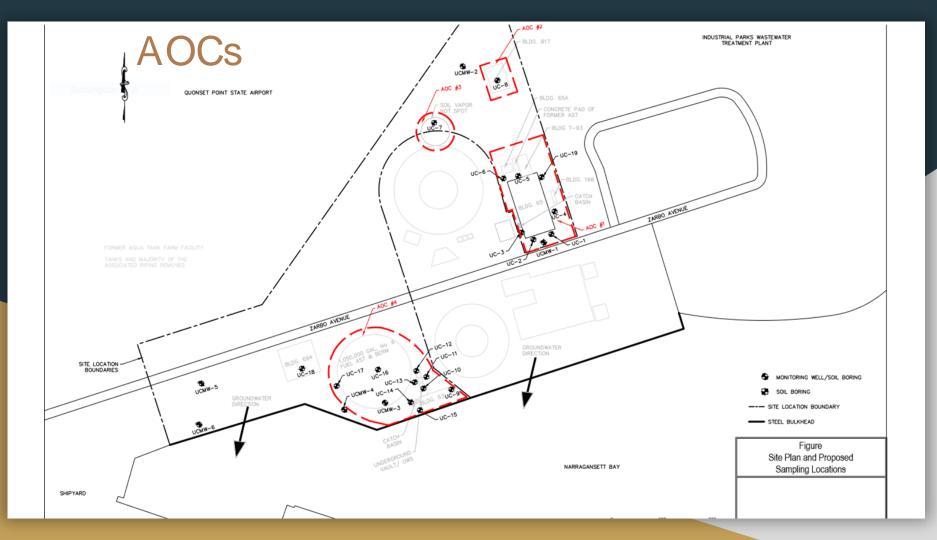
The Five Categories of Identified Contaminants

Volatile Organic Compounds (VOCs)

Semi Volatile Organic Compounds (SVOCs)

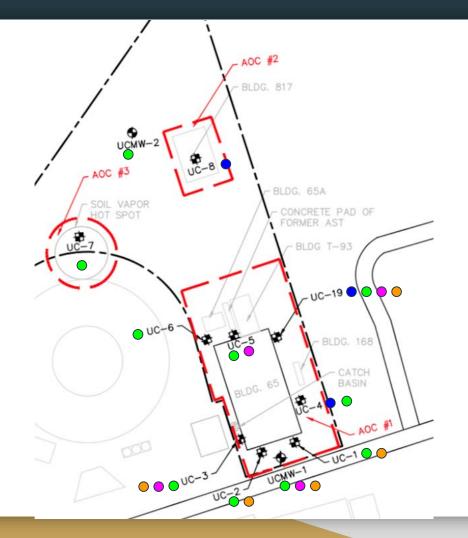
Polychlorinated biphenyls (PCB)

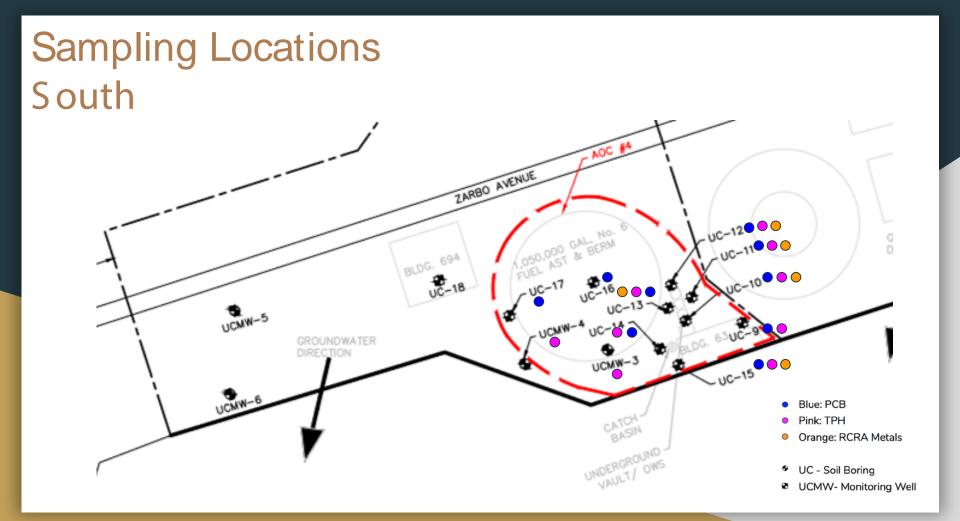
8 RCRA Metals (Metals)

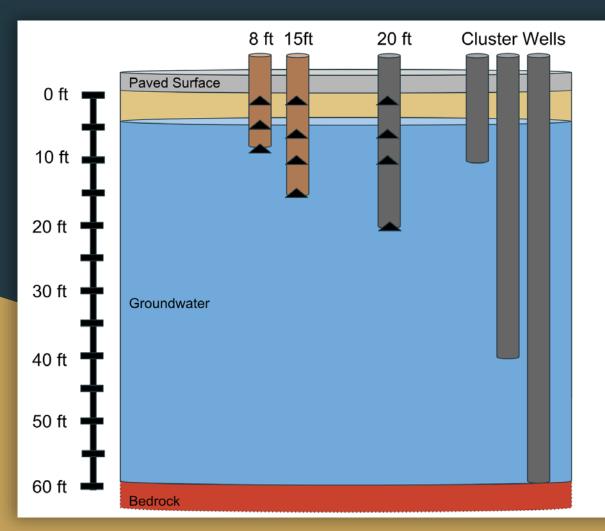

Total Petroleum Hydrocarbon (TPH)

Our Objectives

- Address all the missing data gaps on site
- Design a Field Sampling Plan and investigation based on Areas of Concern
- Design a Screening-level Ecological Risk Assessment Plan to evaluate the risk to wildlife and biota due to the contaminants on site




Field Sampling Plan



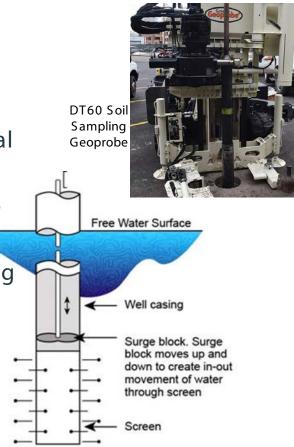
Sampling Locations North

- Blue: PCB
- Green: VOCs and chlorinated solvents
- Pink: TPH
- Orange: RCRA Metals
- UC Soil Boring
- UCMW Monitoring W ell

Sampling Depths (ft): 8: 3, 6, 8 15: 3, 7, 11, 15 20: 3, 7, 11, 20 Cluster wells (10 ft. 40 ft, and bedrock)

Soil Boring Methods

Geoprobe Dual Tube Soil Sampling System:


- DT22 where there's no monitoring wells
 Continuous, unconsolidated
 - Continuous, unconsolidat
 - Outer casing- 2.25 in
 - Inner probe rod- 1.25 in
- DT60 where monitoring wells will be installed
 - Inner probe rod- 4 in

Monitoring Well Installation and Methods

• Geoprobe DT60 soil sampling system

- Works with soil borings to install wells
- Expendable cutting shoe can be attached to dual tube soil sampler to install monitoring well
- Once drilling completed, well developed using surge block and pump
- W ater level measured using electronic water-sensing device
 - At 2 monitoring wells, tidal changes evaluated
- Multi-parameter monitoring device

Surge block

Decontamination Procedures

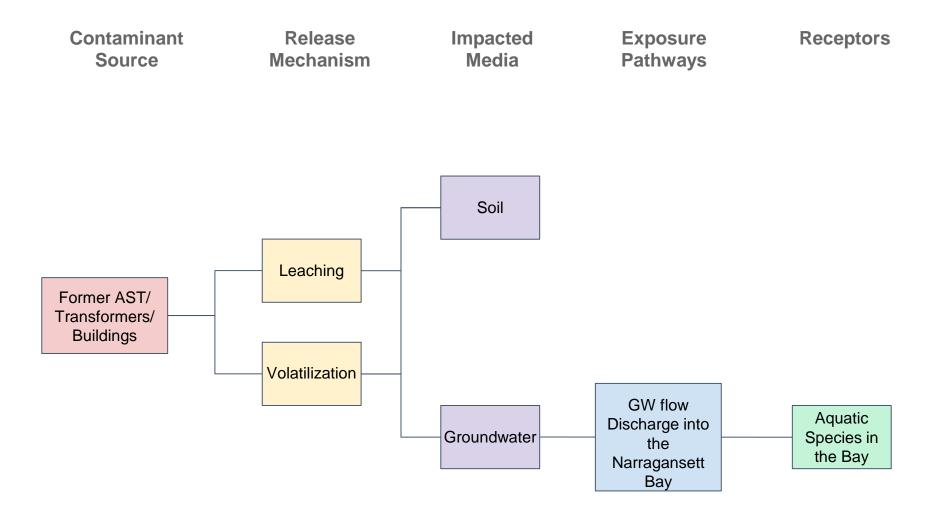
- Important so that future sampling not affected
- Cleaning & decontamination only on leak-proof decontamination pad
- Use EPA-recommended detergent and methods of wastewater disposal
- For direct push technology in contact with sample media
 - Clean equipment with brush, detergent, tap water
 - Rinse with organic-free water
 - Allow to air dry then wrap in aluminum foil or place in clean plastic bag
- If potential for hazardous waste, as defined by RCRA, may need to be handled in alternative manner

Sampling Analysis

- Con-Test Analytical Laboratory
- Samples will be labeled appropriately
- Chain-of-custody will be filled out appropriately
- Equipment Blanks
- Field Duplicates (Dups)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Temperature Blank
- 98 Total Samples:
 - 30 water samples
 - VOCs, SVOCs, Metals, TPH
 - 68 soil samples
 - VOCs, SVOCs, Metals, TPH
 - 64 PCBc

Project Cost Analysis

- Subcontractors Services
- Labor Cost:
 - Engineer cost \Rightarrow \$100/hour
 - \circ 1 working day = 8 hours


BUDGET	\$106,526.79		
Pre-Field Labor	\$4,800.00		
Analysis and Spatial Mapping of			
Exceedances	\$1,600.00		
Development of Sampling Plan Drawing and			
Write up	\$2,400.00		
Coordinating With All the Subcontractors	\$800.00		
Geophysics	\$7,200.00		
GPR Services	\$3,200.00		
Labor	\$4,000.00		
Sampling	\$46,890.79		
Contest Quote	\$46,890.79		
Drilling and Installation	\$36,760.00		
TDS Quote	\$14,360.00		
Labor	\$11,200.00		
Environmental Services	\$6,150.00		
Rental Equipment	\$4,726.00		
Rental	\$4,406.00		
Permanent Purchase	\$320.00		

Planning of Screening Ecological Risk Assessment

Screening Ecological Risk Assessment Outline

- Evaluates the likelihood that adverse ecological effects may occur or are occuring as a result of exposure to one or more stressors
- Based on two major elements:
 - Characterization of effects
 - Characterization of exposure
- Chemicals focused on are based on a historical evaluation of the site
 - Volatile organic compounds (VOCs) are the main chemicals of concern
- South edge of site is bordered by the Narragansett Bay large, shallow estuary

Further Investigation Required

- Laboratory toxicology report on aquatic life near site
- Multiple analyses on groundwater discharge by the bulkhead to help understand which contaminants are going into Bay
- Hydraulic conductivity test for site groundwater
- Test the sediment at the bottom of the bay for anything that may sink
- Plume model of all contaminants discharging into the Bay which should indicate concentration of contaminants

Questions?