

Water Supply and Demand Management Town of Groton, MA SWMI Grant Project BRP-2013-06

Jessica Cajigas, Comprehensive Environmental Inc. April 2, 2015 New England Water Works Association 2015 Spring Joint Regional Conference & Exhibition

Outline

- Introduction
- Demand Management Options
- Supply Management Analysis
- Summary/Take-Aways

GWD's Water Supplies

Source	Existing or Future	Registered or Permitted	Basin	WMA Limits (mgd)	WMA Permit + Registration Annual Average (mgd)
Shattuck Well	Existing (Emergency)	Registered	Merrimack	0.217	
Baddacook Pond Well	Existing	Registered	Merrimack		0.547
Whitney Pond Well #1	Existing	Permitted	Merrimack	0.33	
Whitney Pond Well #2	Existing	Permitted	Merrimack		
Shattuck Road Well #1	Future	Permitted	Merrimack		
Shattuck Road Well #2	Future	Permitted	Merrimack		
Unkety Brook Well #1	Future	Permitted	Nashua	0.2*	
Unkety Brook Well #2	Future	Permitted	Nashua	0.5	

* may withdraw up to 0.3 mgd from these Nashua Basin sources, provided withdrawals from the Merrimack Basin sources are adjusted so as not to exceed an annual average of 0.547 mgd from both basins combined.

Groton Subbasins: Biological Categories

Groton Subbasins: Groundwater Withdrawal Categories

Groton Subbasins: Net Groundwater Depleted

GWD's Baselines

- Merrimack Baseline is 0.455 mgd.
 - Based on 2005 withdrawals plus 5%
 - $_{\odot}$ Less than existing authorized withdrawal of 0.547
- Nashua Baseline is 0.0 mgd
 - New source in new basin, no previous withdrawals

GWD Demands

Compare Baseline to existing withdrawals:

	2009	2010	2011	2012	2013
Annual Average Withdrawal (mgd)	0.37	0.47	0.48	0.46	0.43

- 5-year average of 0.44 mgd
- 13 Development projects already permitted would add 0.12 mgd
- Together (0.56 mgd), withdrawals greater than Baseline (0.455 mgd), would need to be mitigated

SWMI General Components

- Standard Permit Conditions all Permittees
 - Leak detection, metering, pricing, education, etc.
 - $_{\odot}$ 10% UAW and 65 RGPCD
 - Outdoor Watering Restrictions
- Minimization if have subbasins with Aug NGD ≥25%
 - Desktop Optimization
 - Surface Water Releases
 - Additional Water Conservation Measures
 - More Restrictive Outdoor Watering
- Mitigation if withdrawals > baseline
 - Direct or Indirect Measures
 - Reduced by Demand Management Measures optional, encouraged
 - Reduced by Wastewater Returns
- Alternative Source Feasibility if withdrawals cause backslide of BC or GWC

Unkety Brook Wells

- Withdrawals from a new basin (Baseline = 0 mgd)
- Will need to mitigate any withdrawals regardless of whether within baseline for the entire system
- Once in use, SWMI would also require:
 - Demonstration of no feasible alternative source available (0.04 mgd – backslide of BC)
 - Desktop optimization study and consultation with the State (CFR present)
 - Stream and wetland monitoring (in current permit)

Potential Mitigation Requirements and Demand Management Options

Step 1. Determine Withdrawal Request Over Baseline

• A request of 0.56 mgd is 0.107 mgd over baseline

Step 2. Estimate Savings through Additional Demand Management

Demand Management Measures Evaluated for GWD

- Higher Rates for Irrigation Meters
- Expanded Outdoor Water Restrictions
- Private Well Watering Restrictions
- Rebates
- Education/Outreach Program

Estimated Water Savings

Measure	MGD per year
10% Rate Increase for Irrigation Meters	0.001
Expanded Outdoor Watering Restrictions	0.008
(May-Sept, 3-days/week – adds 4 weeks over current)	
Expanded Outdoor Watering Restrictions	0.023
(May-Sept, 2-days/week – reduces watering by 1 day/week)	
Private Well Outdoor Watering Restrictions	0.04
(May-Sept, 3-days/week)	
Private Well Outdoor Watering Restrictions	0.06
(May-Sept, 2-days/week)	
25 Toilet Rebates	0.0008
50 Showerhead Rebates	0.0003
50 Faucet Rebates	0.0008
25 Washing Machine Rebates	0.0002
25 Dishwasher Rebates	0.00003
Education/Outreach Program	0.002

Two Outdoor Water Restrictions:

Potential Measure	MGD saved per year*	
Expanded Outdoor Watering Restrictions	0.008	
May-Sept, 3-days/week – adds four		
additional weeks of restrictions over current		
Expanded Outdoor Watering Restrictions	0.023	
May-Sept, 2-days/week – reduces watering		
by one day per week		
Total:	0.031	

*Estimated values per the Draft WMA Regulations, subject to change per consultation with MassDEP.

Step 1. Withdrawal Request Over Baseline

- o 0.107 mgd
- **Step 2.** Estimated Savings through Demand Management
 - o 0.031 mgd
- **Step 3.** Determine Any Applicable Wastewater Adjustments

Step 3. Determine Any Applicable Wastewater Adjustments

- Adjustment are allowed for new demand served by septic systems
- 13 pending development projects, 10 of which are to be constructed in areas served by septic
- If septic systems are constructed in Merrimack Basin, adjustment could be 0.077 mgd
 - Calculated as average demand multiplied by 85% to account for 15% consumptive loss, in accordance with the Draft WMA Regulations

Step 4. Calculate Required Mitigation Volume

- = requested volume over baseline the demand management estimated savings – wastewater adjustment
- o = 0.107 mgd 0.031 mgd 0.077 mgd = -0.001
- Additional direct or indirect mitigation would not be needed
- Should consult with MassDEP regarding the water savings calculations for each of the demand management measures evaluated, as MassDEP will need to approve all final calculations.

Supply Management Analysis

Supply Management

- Analysis done as part of the Minimization for a desktop optimization analysis
 - Updated hydraulic model
 - Evaluated system hydraulic operations
 - Considered impacts of other factors (water quality, cost to treat, permit restrictions)
 - Considered impacts of developing future sources
 - Identified means to streamline supply management operations

Hydraulic Model

- Updated to simulate extended day (original model only simulated a snap shot in time)
- Programmed for pumps to start/stop based on tank level
- Calibrated against actual tank levels and fire flow tests

Water Age

Residual Chlorine

Pressure

Supply Operation Analysis

- Hydraulics of water system similar with use of any of existing wells as lead source
- Future Unkety Wells will not substantially change system hydraulics
- Selection of lead source based on water quality, cost to treat and permit restrictions
 - Recommended the use of Baddacook Well as much as possible while staying within safe yield & registered withdrawal

Operation Controls

- Need to keep Baddacook Well within registered withdrawal limit
- Pumps operate based on tank level
- Typical operation would be to have lead source first on and last off – but this would pump more than registered
- Modeled Baddacook Well as first on and first off
 - Help to maximize the use of the Baddacook Well, without pumping in excess of the registered authorized withdrawal, while allowing GWD to set a single pumping routine.

Average Day Pumped

Winter Operation

Max Week Operation

Summary/Take-Aways

GWD SWMI Summary

- Implement Standard Permit Conditions:
 - Revise outdoor water use restriction
- Minimization Develop a minimization plan:
 - desktop optimization analysis
 - Evaluation and implementation of additional conservation measures
 - Revised outdoor water use restriction
- Mitigation:
 - May require just a Demand Management Plan
 - If using direct or indirect mitigation Mitigation Plan

Take-Aways for All Permittees

- Determine your withdrawal volume to be requested taking into account expected growth/development
- Know your subbasin characteristics
- Review Minimization Measures what's feasible?
- If you have to Mitigate:
 - Determine demand management efforts you can implement
 - Identify potential mitigation measures

Questions?