Watershed Management and Modeling as Tools in the Restoration of Pearly Pond, Rindge NH

Catherine Owen Koning Franklin Pierce University, Rindge, NH Rebecca Balke, Ben Lundsted

Comprehensive Environmental Inc., Merrimack, NH

Pearly Pond Management Planning Project

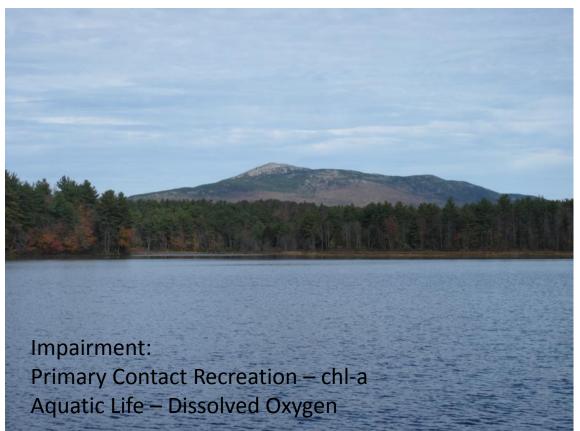
Funded by NHDES Watershed Assistance Program

Matching provided by:

- Franklin Pierce
- Pearly Pond Assocn
- Town of Rindge

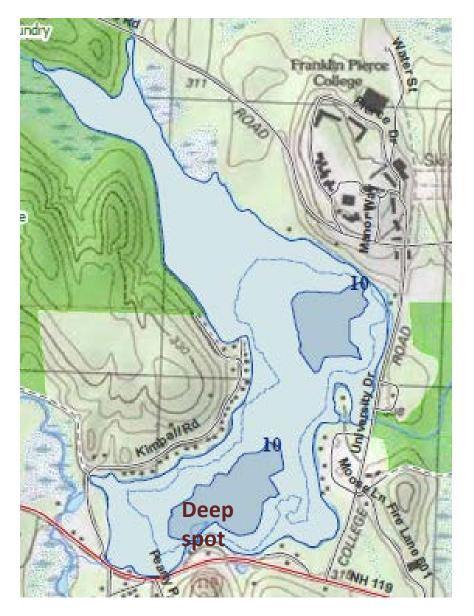
Technical Assistance:

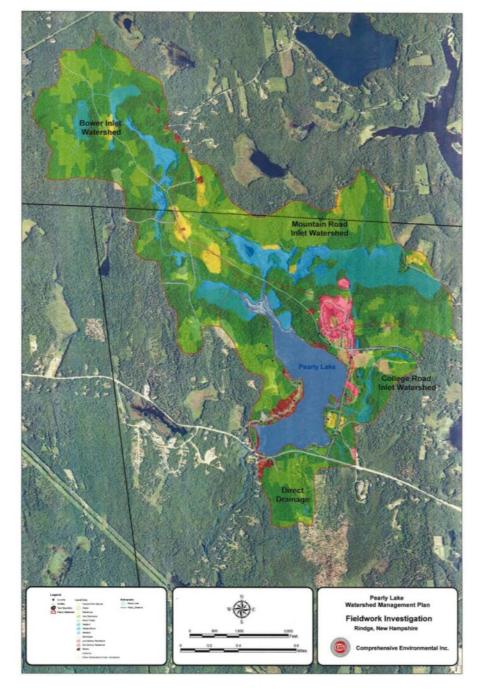
- Comprehensive
 - Environmental, Inc.



Project Overview

Pearly Pond, Rindge NH





Pearly Pond

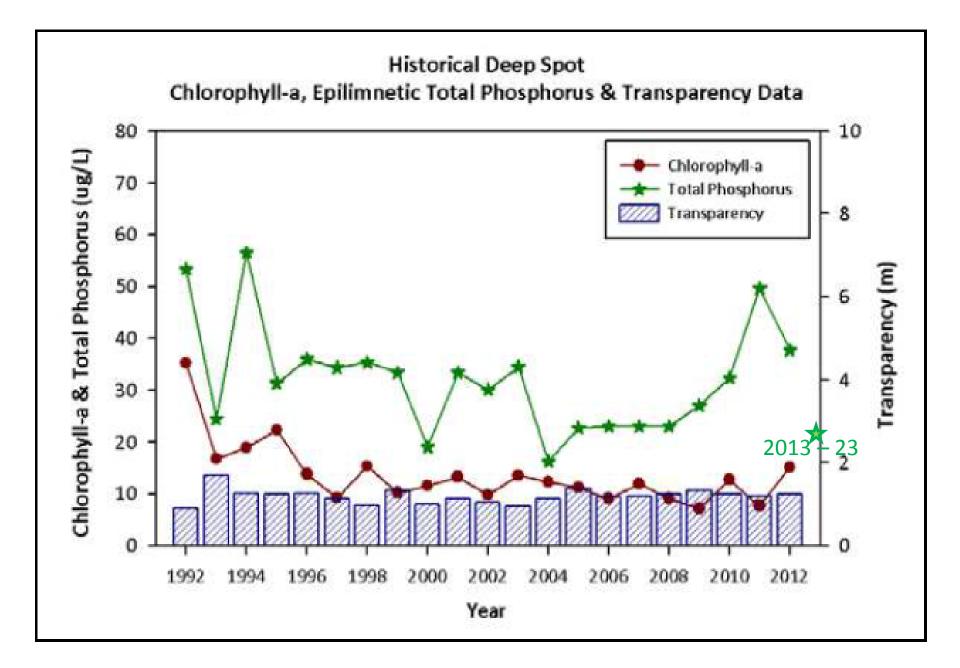
- 191 acres (78 ha)
- Shallow: 1.6 m avg
 3.4 m deepest
- Flushing rate: 4.7x/yr
- Warm water fishery
- Invasive variable milfoil

Watershed

- 2126 acres (861 ha)
- Little development:
 - Franklin Pierce
 - 53 residences
- Major nutrient sources:
 - Past: FPU WWTF
 - Septic systems
 - Runoff
 - Geese

Wastewater treatment Facility (WWTF)

IB=Infiltration beds



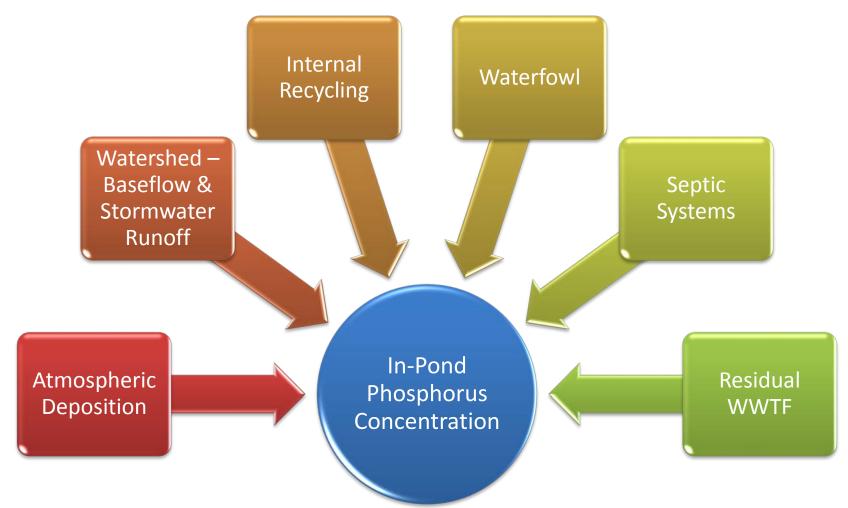
Project Goals

- 1. Reduce phosphorus levels to the level that would eliminate harmful algae blooms
- 2. Use model to identify sources, possible solutions
- 3. Work with stakeholders to write management plan

Where is the P coming from? I didn't do it! I was FRAMED!

Model Overview

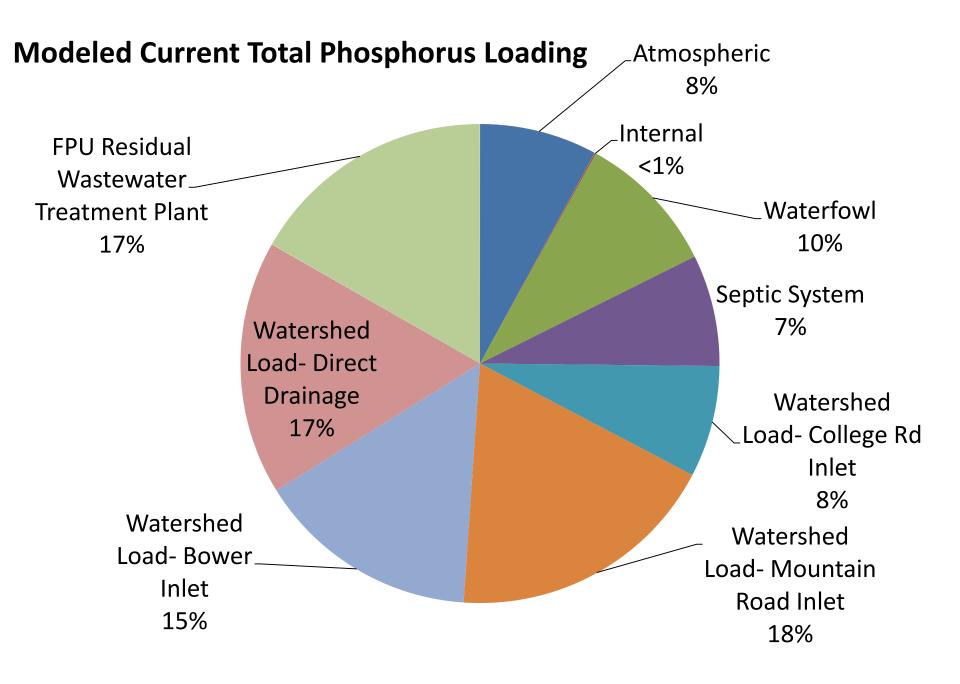
- ENSR-LRM Model Land-use export coefficient model
- Land use, septic system data collected via surveys, ground-truthing, landowner contact
- Inputs predict phosphorus load, water load, and phosphorus concentrations in streams and pond
- Calibrated to 2009-2014 water quality data
- 2009 marks end of WWTF discharge to wetlands redirected to rapid infiltration basins (RIBs)

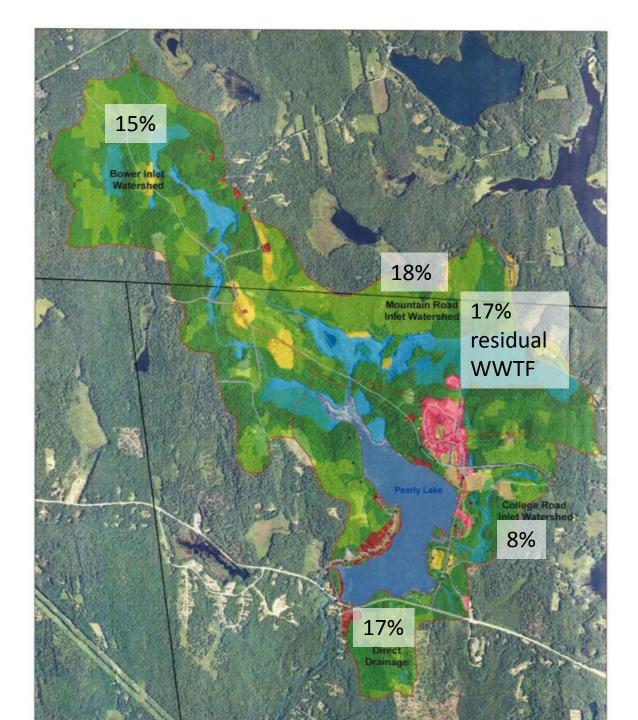


Model Overview

Model Results

Unique to Pearly Pond


- WQ indicates high background phosphorus in baseflow
- Residual phosphorus load from historic WWTF discharge to wetlands
- Stormwater surface runoff and NPS pollution contributes 40-50% of the total phosphorus load



What should we do?

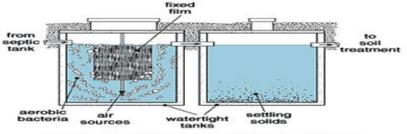
Just keep eating, Marvin, they'll never figure it out!

Potential Restoration Steps

- Non-structural BMPs
 - Ordinance review & updates
 - Shoreline survey & public education
 - Reduce phosphorus loads by adjusting behaviors within the watershed and along shoreline of the lake

Potential Restoration Steps

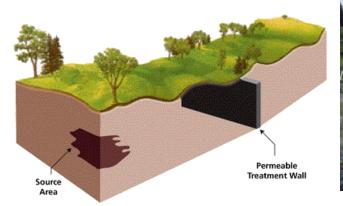
- Structural BMPs
 - Wastewater Improvements (3-5%)
 - Wetland Improvements (12-14%)
 - Stormwater BMPs (45-50%)



Wastewater Improvements

- Reduce septic inputs to lake (sewering \$\$\$)
- Reduced flows reduce I&I and water consumption
- Nutrient source reduction
- Increase storage and minimize shock loading
- Increase phosphorus removal and retention time at plant
 - Chemical / biological additives
 - RBC function (run in series)
- Improve the function of the RIBs
 - Rotation of bed loading & contact time
 - Bind phosphorus (iron enhancement)

SEQUENCING BATCH REACTORS



Wetland Improvements

- Wetland Restoration
 - Dredge
 - Harvest & re-vegetate
- Chemical Treatment / Phosphorus Binding
- Floating Treatment Wetlands
- Reactive Barrier Walls

Treatment Islands

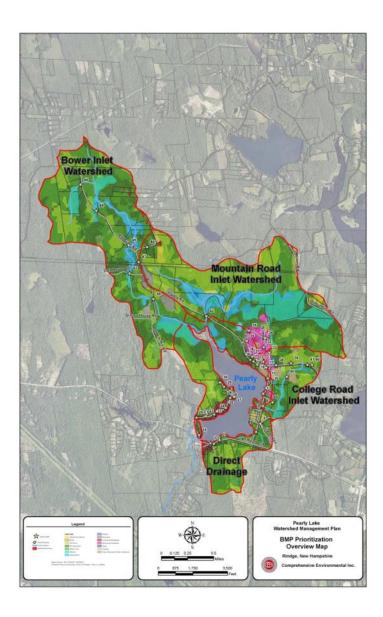
Mechanical Methods

Field Work Plan & Site Selection

- 1) Visited all Roadway Crossings with Tributaries
- 2) Reviewed Roadways and Drainage
- 3) Visited Sites with watershed residents and Steering Committee
- 4) Investigated FPU Campus Drainage

Field Work Plan & BMP Rational

Evaluated the Sites for a number of factors and identified potential Best Management Practices (BMPs):


> Sediment Drainage Structural or Culvert Direct Runoff to Proximity to Accessability Potential Type of BMP Accumulation Condition Waterbody Waterbody Constraints Deposits Erodibility Vegetation Yes No ircle One or both N/A **Bioretention Area** None Slight build up N/A. Drainage Structure / Pipe oprox. Distance lope Plunes Pool Grease/Oil None None N/A No Distress Slight Heavy build up Channeling Treatment Swale Fasy Grass Clippines At Crossing Good Distressed Feet Moderate Infiltration Trench / Basin Moderate Depressions Compost Overland Flow oprox. Depti Corroded Sparse Steep Wet Pond / Constructed Wetlands Difficult Trash/Debris Bank Erosion Drainage Outfall Cracked Undesirable Woody me of Waterbodu Algae/ Blooms Displaced Riprap Filter Strip Inches Exposed Steel Invasive Plants Actmetions Leaching CBs / Sub-Chambers Other" Other* Other* Trees Boulders Other* Available Space X Yes No None ircle One or both **Bioretention** Area None N/A Slope: X Slight build up trainage Structure / Pipe N/A pprox. Distance Plunge Pool X_Grease/Oil X None None Slight Heavy build up X N/A No Distress Channeling X_Treatment Swale X_Easy X_Grass Clippings At Crossing X_Moderate 30_ Good X Distressed Ecol X Infiltration Trench / Basin Moderate Compost Depressions X_ Overland Flow Steep nnrox Depth Corroded Sparse Wet Pond / Constructed Wetlands Difficult X Trash/Debris Bank Erosion Drainage Outfall Undesirable Woody me of Waterbody Cracked **Filter Strip** _ Algae/ Blooms Displaced Riprap bstructions __ In ches 6 Exposed Steel Invasive Plants Leaching CBs / Sub-Chambers Other" Other* Trees Other* Boulder: _Other* Available Space X Yes No None rele fine or both Bioretention Area None N/A Slope: X Slight build up Prainage Structure / Pipe N/A pprox. Distance. Plunge Pool X Grease/Oil X_None None _Slight No Distress Heavy build up X N/A Channeling At Crossing X Treatment Swale X. Easy X. Grass Clipping X Moderate Good X Distressed 30 Feet X_ Infiltration Trench / Basin _Moderate Compost Depressions X Overland Flow Steep Corroded Approx Depth Sparse Wet Pond / Constructed Wetlands Difficult X_Trash/Debris Bank Erosion Drainage Outfall Und estrable Woods me of Waterbody Cracked Filter Strip Algae/ Blooms Displaced Riprap Instructions Exposed Steel 6 Inches Invasive Plants Leaching CBs / Sub-Chambers Other* Other" Trees Other* Boulders Other* X Yes No itcle One or both None None Bioretention Area Drainage Structure / Pipe N/A X Slight build up X Grease/Oil N/A Approx Distance slose: Plunge Pool N/A None None Grass Clippines No Digress Heavy build up Slight At Crossing X_Treatment Swale X_Easy Good X_ Channeling X. Distressed Compost 50 Feet X_Moderate X Infiltration Trench / Basin Moderate Corroded Depressions X Overland Flow Approx. Depth X_Trash/Debris Sparse Steep Drainage Outfall Wet Pond / Constructed Wetlands Difficult X Cracked Bank Erosion Und esirable Woody me of Waterbody Algae/ Blooms Elizar Style Exposed Steel Displaced Riprap Unknown X_Other* bstructions Inches Invasive Plants No outlet Leaching CBs / Sub-Chambers Other" Other" Trees ediment **Brick Built** Boulders X_Other*

Site Matrix & Field Notes

Site Location & Type Apparent Issues Pollutant Sources Potential Impacts Site Constraints Property Owner Accessibility Potential BMPs Maintenance

Findings

- **100** Areas of concern and
- **50** Potential BMP sites identified:
 - ✓ **11** Roadway / Stream
 Crossing Sites
 - ✓ 22 Roadway Drainage Sites
 - ✓ 4 Lake Front Sites
 - ✓ 10 Parking Lot Sites
 - ✓ 3 Individual Property Sites

Potential BMP Sites – Roadway Drainage

Gravel Roads

Potential BMP Sites – Minimal buffers along Lake Front

Rt 119 – State Highway

University Drive

Potential BMP Sites – Culverts & Stream restoration

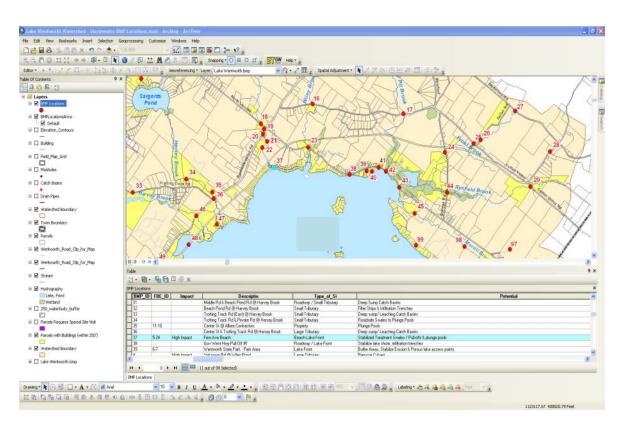
Bank Erosion

Drainage at Culvert Crossings

Potential BMP Sites – Erosion Repairs

At Drainage Outfalls

Along Shoreline



Two Tiered Ranking Process:

The intent is to use preliminary model results to prioritize hot spots and then rank those sites based on a more refined cost and pollutant removal estimate.

- 1st round ranked 50 sites down to the top 30
- 2nd round ranked the top 30 sites down to the final 4-6 BMP Sites.

1st Ranking Process

- General Criteria to Identify Potential Impacts & Feasibility
 - Size & Type of Impairment
 - Surrounding Land Use
 - Proximity to the Waterbody
 - Site Constraints (access, land ownership, ledge, high GW, etc.)
 - Permitting Concerns
 - Ease of Construction / Maintenance

2nd Ranking Process:

Ranking Criteria (top 30 sites):

- BMP Drainage Area
- Percent Impervious
- Land Use Types
- Pollutant Removal
- BMP Cost
- BMP Maintenance Cost

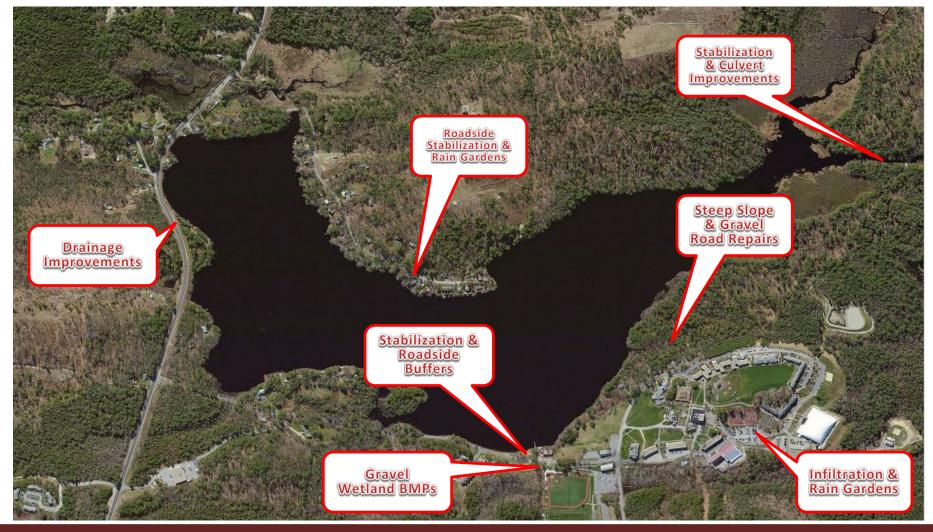
\$ per pound of
 pollutant
 removed

On average over a 10 year period ~ \$2,500 - \$5,000 per pound

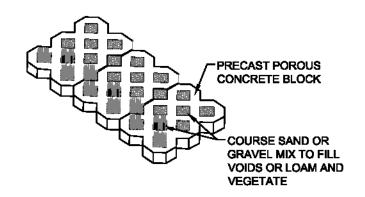
Selected BMPs = Most

Cost Effective

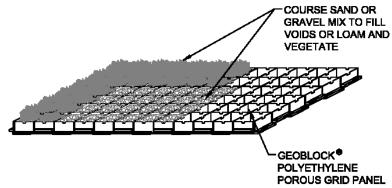
TABLE 5.0 - TOP 6 STORMWATER BMP OPTIONS														
Rank	BMP Map ID	BMP Descrition / Type	Location	ВМР Туре	Total Costs w/ Contingency	Total Cost Grant Request (60%)	Total Cost Grant Match (40%)	Total 10 yr Costs	ВМР Туре	BMP Efficiency	Total TP Loading	TP Annual Removal	TP 10 Yr Removal	10 Year Cost / Ib TP
					(\$)	(\$)	(\$)	(\$)		(%)	(lb/yr)	(lb/yr)	(lb/yr)	(\$/lb)
1	11	Drainage Improvements, CB to bioretention areas and gravel wetlands, install infiltation strip & stabilization to beach area	University Drive / Beach Area & Fields	Gravel Wetland / Vegetated Buffers	\$265,200	\$159,120	\$63,648	\$271,200	Gravel Wetland / Vegetated Buffers	65%	15.71	10.21	102.14	\$2,655
2	37	Infiltration BMPs / Raingardens throughout FPU parking lots	Franklin Pierce Drive / Community Center Parking	Small Bioretention / Small Infiltration	\$158,800	\$95,280	\$57,168	\$164,800	Small Bioretention / Small Infiltration	65%	6.59	4.29	42.86	\$3,845
3	3	Bioretention / Treatment BMPs along Rt. 119	NH Route 119 / Highway Drainage	Large Bioretention	\$95,200	\$57,120	\$34,272	\$101,200	Large Bioretention	65%	3.64	2.37	23.66	\$4,277
4	20	BMP wetpond, bioretention system, roadway structures drainage and piping	Kimball Road / Sharp Curve	Wet Pond / Small Bioretenion	\$66,400	\$39,840	\$23,904	\$71,400	Wet Pond / Small Bioretenion	65%	2.41	1.57	15.68	\$4,553
5	33	New CBs, new drainage diversions & infiltration BMPs throughout FPU parking lots and buildings	Franklin Pierce Drive / FPU Library & Courts	Large Infiltration	\$125,300	\$75,180	\$45,108	\$131,300	Large Infiltration	65%	4.43	2.88	28.81	\$4,557
6	12	Raingarden at FPU Community Center	Franklin Pierce Drive / Community Center	Small Bioretention	\$30,800	\$18,480	\$11,088	\$35,800	Small Bioretention	65%	1.20	0.78	7.77	\$4,607
Totals - Top 6					\$741,700	\$445,020	\$235,188	\$775,700			33.99	22.09	220.93	



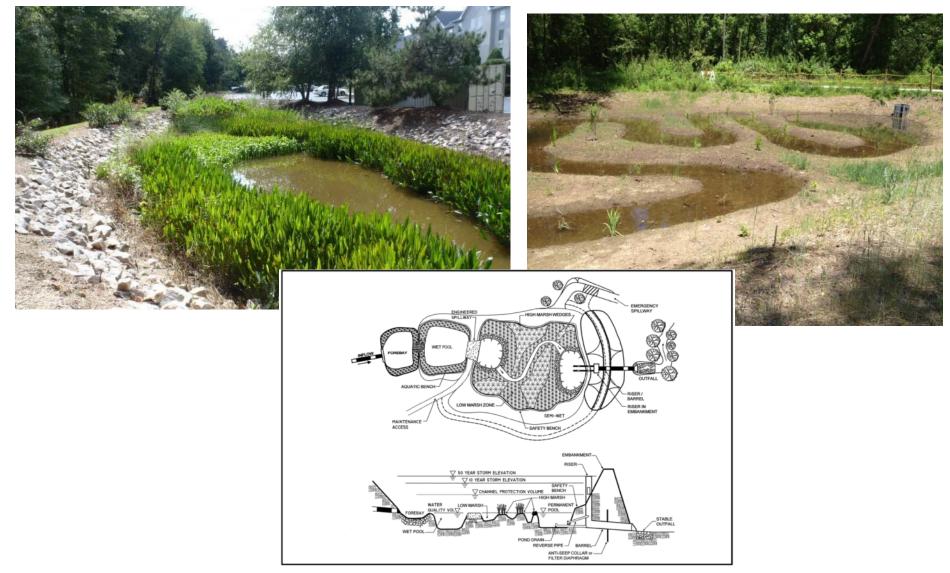
Stormwater BMP Improvements Potential BMP Locations

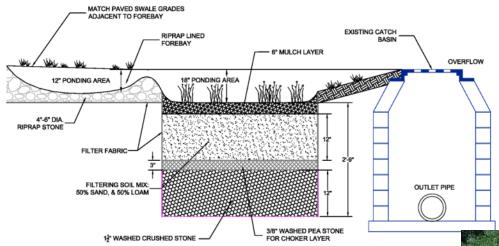





Beach Areas & Access Points – Site Stabilization

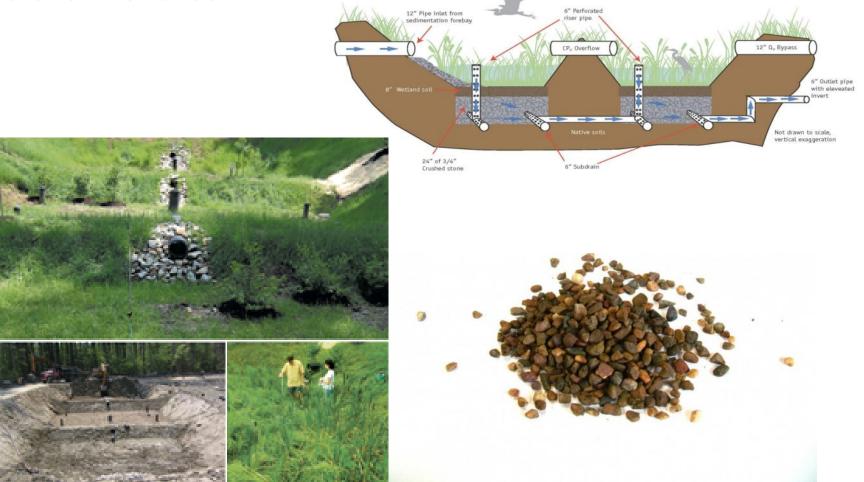
& Porous Materials





Treatment Ponds – Constructed Wetlands & Infiltration Ponds

Bioretention & Rain Gardens



Gravel Wetlands

