

Annual Nonpoint Source Conference April 29, 2014

IS YOUR ROAD A BMP?

Presented by

David C. Nyman, P.E. Comprehensive Environmental Inc.

Roads as BMPs

Application of Low Impact Development/ Integrated Site Design to Roadways:

Goal of the design approach is to:
First...Significantly minimize or reduce runoff/pollutants

□ Then... treat the remaining runoff.

Roads as BMPs

Integrated Site Design for roadways, involves
Minimizing effective impervious cover (EIC):
Directly reducing/minimizing pavement
Maximizing infiltration
Maximizing vegetative uptake
Managing pollutants close to their source

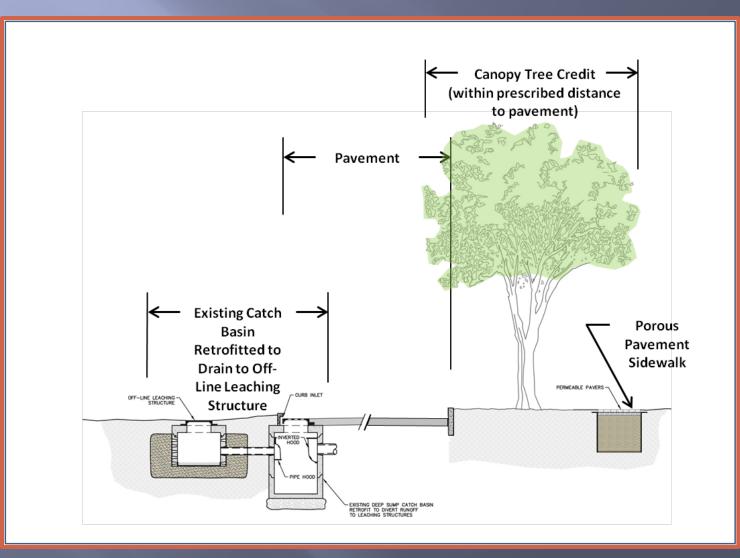
Roads as BMPs

Roadways consist of

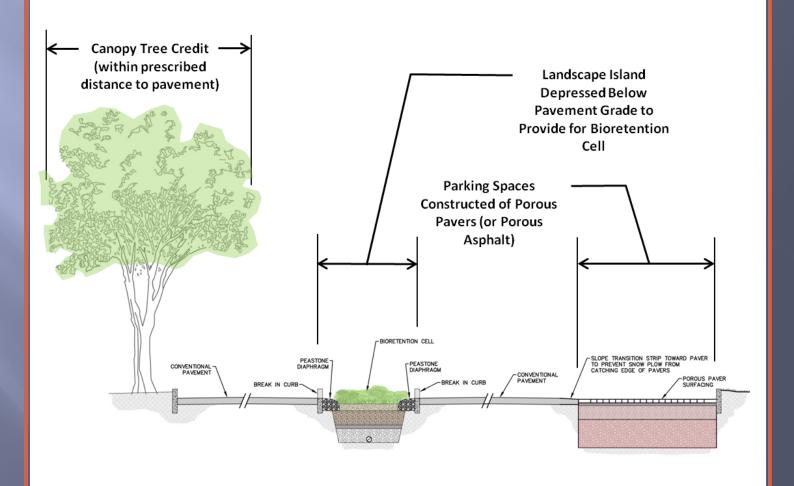
- Paved surfaces
- Graded side slopes
- Drainage conveyance systems
- Managed rights-of-way

Develop a design approach to integrate runoff reduction and pollutant attenuation functions into these features.

Roads as BMPs Rural Roadways


Т

PAVEMENT	EMBANKMENT	COUNTRY DRAINAGE	REMAINING R.O.W.				
BMP Illustrated: • Open Graded Friction Course (Limited Access Roadway Only)	BMP Illustrated: • Media Filter Drain Other Options: • Pavement	BMP Illustrated: • Micro-pool Filter Other Options: • Dry Water Quality	BMP Illustrated:Forested Canopy Credit (within 100 feet of pavement)				
Other Option: • Pervious pavement	 Disconnection Vegetated Filter Strip Compost Amended Vegetated Filter Strip Embankment Media Filter (steep slopes) 	Swale • Wet Water Quality Swale • Grassed Swale					
UNDERDRAIN SAND FILTER							


Т

Т

Roads as BMPs Urban Streets

Roads as BMPs Parking and Service Facilities

Design Roads as BMPs

- Consider roadway elements as potential BMPs:
- Pavement stormwater practices
- Embankment stormwater practices
- Conveyance stormwater practices
- Roadway landscape stormwater practices

Pavement Options: Pervious Pavements

Raleighnc.gov

co.jefferson.wa.us

Pavement Options: Pervious Pavements

Maine Mall Road, South Portland, ME

~16750 AADT within Project Limits

Maine Mall Road – Construction 7/27/2009

Maine Mall Parking Lot 1/17/2013

Maine Mall Road - Same Day

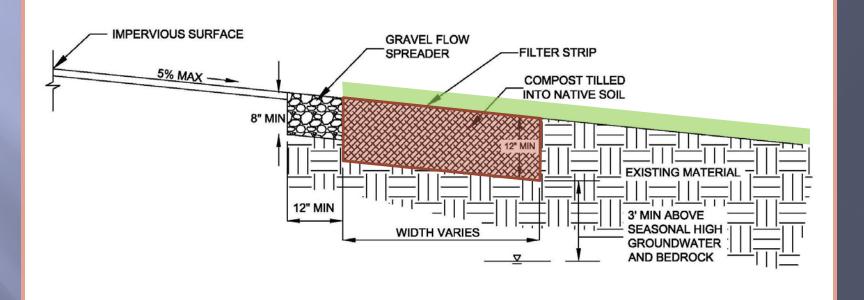
Source: Maine DOT

Pavement Options: Open Graded Friction Course (OGFC)

Conventional Pavement

Open Graded Friction Course

Source: Barrett, M. and C. Shaw. 2006. Stormwater Quality Benefits of a Porous Asphalt Overlay.


Pavement Options: Open Graded Friction Course (OGFC)

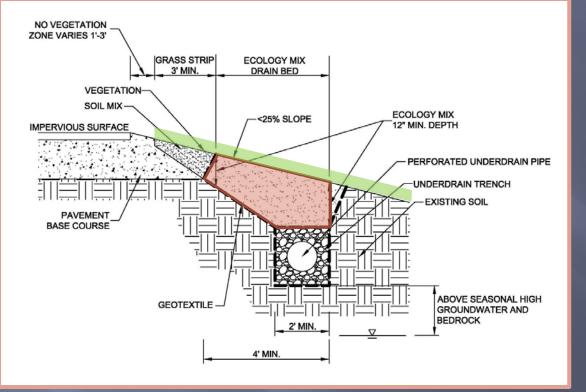
OGFC Pollutant Reduction Relative to Conventional Pavements

Study	Pollutant (Relative % Reduction)				
	TSS	Total P	Total Cu	Total Pb	Total Zn
Berbee, et.al., 1999	91	-	67	92	90
Pagotto, et.al., 2000	90	-	35	78	66
Barrett, et.al., 2005	93	-	79	95	73
Barrett & Shaw, 2006	91	35	-	90	75
Barrett, et.al., 2006	94	-	75	93	76
Stannard, et.al., 2008	88-92	51-64	51-58	88-91	81-84
Eck, et.al., 2011	91-96	66-78	56-69	>90 - >96	87-90

Eck, et.al., 2011 also shows relative reduction does not deteriorate over time.

Embankment Options: Compost Amended Vegetated Filter Strips (CAVFS)

2/3 loamy sand and 1/3 compost


Adapted from Washington Department of Transportation

Embankment Options: Compost Amended Vegetated Filter Strips (CAVFS)

CAVS Pollutant Removal

Study	Pollutant					
	TSS	Total P	Total Cu	Total Zn		
WSDOT, 2005 (% Removal, conc.)	84	-17	79	67		
Herrara, 2007 (% Removal, conc.)	94	77-84	80-84	87-90		
Herrara, 2007 (% Load Reduction)	98-99	96-99	96-100	97-100		

Embankment Options: Media Filter Drain (MFD)

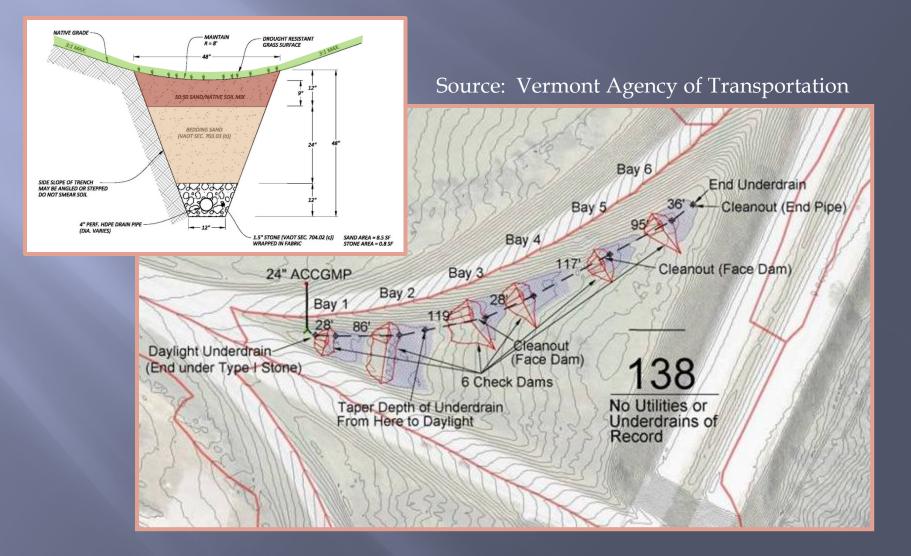
Ecology Mix:

crushed stone aggregate perlite dolomite gypsum

Adapted from Washington Department of Transportation

Embankment Options: Media Filter Drain (MFD)

Media Filter Drain Pollutant Removal

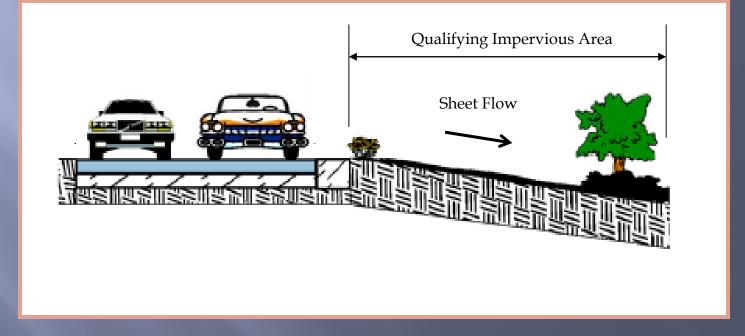

Study	Pollutant (% Removal)						
	TSS	Total P	Total N	Total Cu	Total Pb	Total Zn	Turbi- dity
WSDOT, 2005	95	84		82		89	
Wright Water Eng′rs, et.al., 2011				57	67-85	59-83	
Geosyntec, et.al., 2010		47	42				
Geosyntec, et. al., 2011							80

Conveyance System Options

- Accessible, maintainable systems based on use of natural materials
- Linear conveyance systems that provide treatment; examples:
 - Water Quality Swales
 - Linear Bioretention Swales
 - Variations: think outside the box:

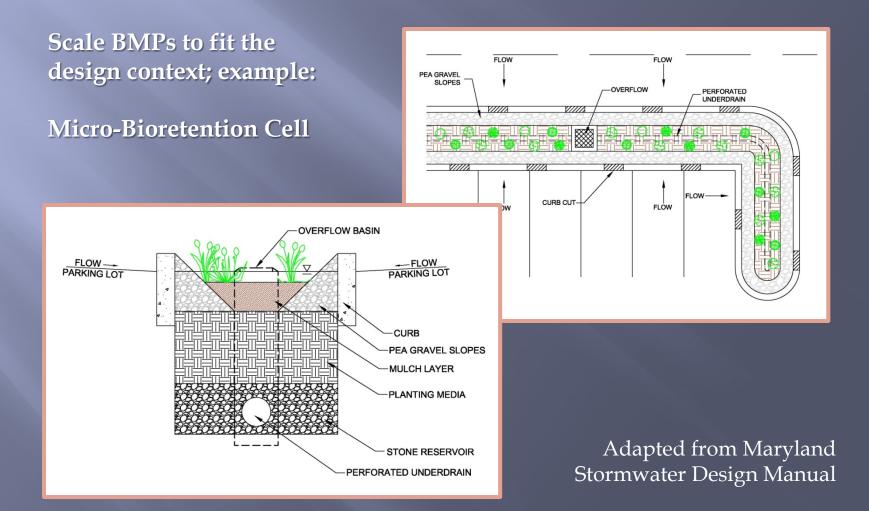
VTrans Micro-Pool Filter

Conveyance System Options: Micro-Pool Filter



Conveyance System Options: Micro-Pool Filter

Estimated Micro-Pool Pollutant Removal

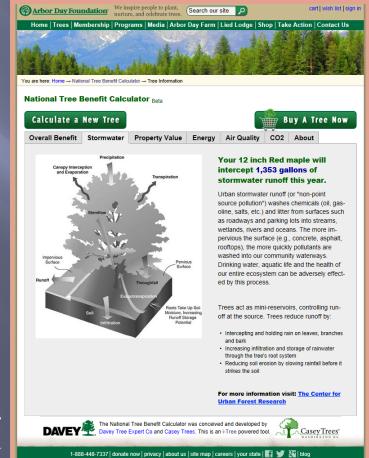

Source	Pollutant (% Removal)					
	TSS	Total P	Total N	Cu, Pb, Zn, Cd		
MassDEP, 2008 Data for Sand Filters	80	10-50	20-40	50-90		
Plus:	Channel Protection Enhanced treatment by settling pools, vegetated filter layer					

Landscape Management Options: Pavement Disconnection

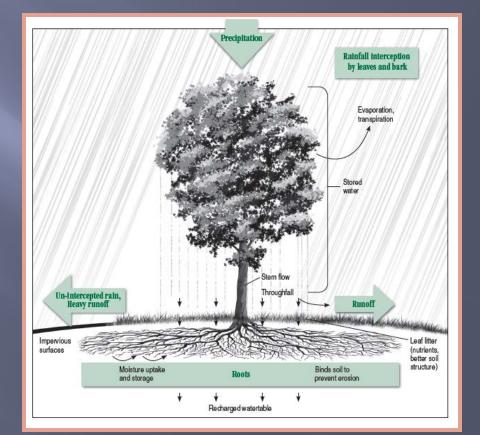
Adapted from Maryland Stormwater Design Manual

Landscape Options: "Micro" treatment systems

Trees <u>as</u> BMPs
Urban street trees (individual trees)
Wooded landscape


(carsmoveus.com)

CUFR 2007

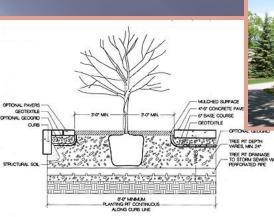

In Central Massachusetts, a 12-inch Red Maple... Intercepts 1353 gallons of water per year; Equals 3.8 inches of runoff reduction over the area of the tree's canopy Significant "Runoff" **Reduction**" potential

National Tree Benefit Calculator https://www.arborday.org/calculator/index.cfm

In addition to interception/ evaporation, trees reduce runoff by:

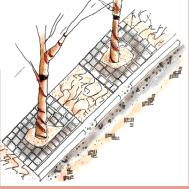
- Uptake and transpiration from the ground
- Enhancing infiltration into the ground
- Roots binding soil, preventing erosion and associated accelerated runoff

Source: Tree City USA Bulletin No. 55 Arbor Day Foundation


Use trees for runoff reduction:

- Introduction, restoration, or preservation of individual canopy trees
- Preservation/restoration of forested landscape
- Incentives for implementation of these measures

Landscape Options: Credits for Trees


City of Philadelphia, PA stormwater program: Water Quality Volume reduction for individual trees Existing tree preservation (canopy within 20 feet) New tree installation (canopy within 10 feet) Must comply with specified standards Pennsylvania (State) Stormwater BMP Manual Individual tree credits Forested area credits (within 100 feet □ Portland, OR Comparable practices to Philadelphia

Is Your Road a BMP?

Tree Canopy Preservation?

> Enhanced Conveyance System?

dnyman@ceiengineers.com

Pavement Disconnection?

Media Filter Drain?

