TREES AS BMPS

Using Tree Canopy for Stormwater Runoff Reduction

David Nyman, P.E.
Comprehensive Environmental Inc.

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA
© 2017 Comprehensive Environmental Inc.
Runoff reduction benefits of tree canopy
- Why consider tree canopy?
- Can we quantify the benefit?
- Sustainability

Tree Canopy & the MS4 Program
- New development/redevelopment credits
- Community tree programs

Other considerations
- Safety
- Nutrient Management
Ecological Services of Trees

Municipal Forest Resource Analysis: New York City (Center for Urban Forest Research, 2007)

- Tree inventory & benefit analysis quantified:
 - Energy savings
 - CO2 reduction
 - Other air pollutant reduction
 - Enhanced property value
 - Stormwater runoff reduction

Source: CUFR 2007
Annually, trees provide $121.9 million in ecological services for NYC.
- $209 per tree
- $5.60 in benefits for every $1.00 for tree planting and care

Trees provide $35.6 million annual savings in treating stormwater, because of rainfall interception
- Average reduction of 1432 gallons per tree per year
Stormwater Benefits of Trees

The Tree Benefit Calculator indicates a 12-inch Red Maple in the Northeast intercepts 1353 gallons of water per year (~3.8” over the area of its crown).

National Tree Benefit Calculator
https://www.arborday.org/calculator/index.cfm

http://www.publicdomainpictures.net/
Stormwater Benefits of Trees

- CEI Project: “Tree Canopy Stormwater Implementation & Outreach Program”
 - Quantify stormwater benefits of trees
 - Explore use of tree canopy for stormwater management under Federal and State programs
 - Develop implementation and outreach tools to promote tree canopy management as a BMP
- Financed with Federal Funds from the EPA under § 319 (MassDEP Project 14-07/319)
- Developed by USDA Forest Service & partners
 Arbor Day Foundation Davey Tree Expert Company
 Society of Municipal Arborists Casey Trees
 International Society of Arboriculture

- Suite of Software Applications & Utilities
 - i-Tree Design
 - i-Tree Hydro
 - i-Tree Species
 - Other “urban forest management” applications
Stormwater Benefits of Trees

- Apply *i-Tree Hydro* to prototype scenarios:
 - Subdivision roads
 - Urban streets
 - Parking lots

(Alex92287 – Flickr.com)

(Using Trees to Reduce Stormwater Runoff - Center for Watershed Protection/USDA Forest Service)
Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA

© 2017 Comprehensive Environmental Inc.

Runoff reduction
Phosphorus reduction
Subdivision Road Alternatives

Total area under canopy 41% 57% 81%
Impervious under canopy 31% 41% 74%
Urban Street Alternatives

<table>
<thead>
<tr>
<th>Description</th>
<th>11%</th>
<th>41%</th>
<th>53%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area under canopy</td>
<td>11%</td>
<td>41%</td>
<td>53%</td>
</tr>
<tr>
<td>Impervious under canopy</td>
<td>11%</td>
<td>41%</td>
<td>53%</td>
</tr>
</tbody>
</table>
Parking Lot Alternatives

<table>
<thead>
<tr>
<th>Total area under canopy</th>
<th>11%</th>
<th>25%</th>
<th>38%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impervious under canopy</td>
<td>7%</td>
<td>18%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA © 2017 Comprehensive Environmental Inc.
Results of i-Tree Hydro Analysis

Runoff reduction ~ 15% for impervious surface located beneath tree canopy

Range for scenarios analyzed = 7 to 74%

Impervious Area Beneath Canopy as % of Total Impervious Area

Runoff Reduction Over Total Impervious Area

y = 0.1524x

Range for scenarios analyzed = 1.1 to 12.4%
Runoff Reduction WQV Credit

- Shaded Impervious Surface Only
Section 2.3.6. of Permit issued in 2016 requires:

- MS4’s must have a program to address post construction stormwater management
- New development and redevelopment projects must retain runoff and/or treat for specified removals of TSS (and other pollutants)

<table>
<thead>
<tr>
<th>New development</th>
<th>Retain 1.0-inch runoff volume from total post-development impervious surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redevelopment</td>
<td>Retain 0.80-inch runoff volume from total post-development impervious surface</td>
</tr>
</tbody>
</table>
US EPA NPDES MS4 Permit

- Regulatory language for credits for tree canopy:
 - Preserve existing trees overhanging pavement
 - Provide new trees that will grow to overhang pavement
 - Provide for long term viability
- Credits designed to allow a reduction in volume of runoff retained and/or treated for either new or redevelopment projects
Runoff Reduction Credit

- Limits on disturbance around existing an existing trees

How close can new pavement encroach without damaging tree?

Recommend requiring assessment by a qualified tree professional

Tree species vary in sensitivity:

http://www.extension.umn.edu/garden/yard-garden/trees-shrubs/protecting-trees-from-construction-damage/#pavement

http://www.seattle.gov/trees/treeCare.htm
Runoff Reduction Credit

- New tree plantings – need to account for variation over the lifetime of the tree.

![Graph showing annual interception in gallons for different tree species over years after planting.](image-url)
Runoff Reduction Credit

- Applies to pavement with overhanging canopy
- Existing trees:
 - 15% volume reduction for qualifying trees
 - Protection of trees during construction
 - Limits on new pavement beneath the tree
- New tree plantings
 - 7.5% volume reduction for qualifying trees
 - Provision of adequate soils volume for long term viability
- Requires maintenance and replacement
Canopy Tree/Pavement Relationship

Will the tree destroy the pavement...

...or will the pavement kill the tree?

(MassDOT)

(Using Trees to Reduce Stormwater Runoff- Center for Watershed Protection/USDA Forest Service)

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA
© 2017 Comprehensive Environmental Inc.
Tree versus pavement...

Source: McPherson & McDonagh, 2012
Average life expectancy of urban tree = 7 to 10 years
Limited by soil water and nutrient storage
Solution = ~ 2 cu. ft. of soil volume per sq. ft. of crown

Properly sized planting beds - assist where needed using:

- Suspended pavement/structural cells
- Structural soil material

http://www.davey.com/media/183712/Stormwater_to_Street_Trees.pdf

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA © 2017 Comprehensive Environmental Inc.
Long term management considerations

- Prevention of future removal
- Provision for replacement
- Provision for tree maintenance
- Provision for pavement sweeping
Tree Canopy BMP Website

www.treecanopybmp.org

- Information about the study
- Links to resources
- Model regulatory language
- Outreach materials
Community Programs

Links to resources

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA
© 2017 Comprehensive Environmental Inc.
* We anticipate this language will be compatible with model bylaw & regulations under development by MAPC/Neponset Stormwater Partnership, to be available mid-2017

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA
© 2017 Comprehensive Environmental Inc.
Community Programs

Map/Inventory Public Trees and Benefits

GIS-based canopy mapping utility

Tree inventory protocol & supporting analysis software
Community Programs

Map/Inventory Public Trees and Benefits

sUAV mapping & analysis

Presented at CEI’s Navigating the New Stormwater Permit on March 30, 2017 in Marlborough, MA
© 2017 Comprehensive Environmental Inc.
Safety Considerations

How much “clear zone” is enough? (context sensitive)

MassDOT
Nutrient Loading Considerations
Questions?

Tree Canopy Stormwater Implementation & Outreach Program

Financed with Federal Funds from the EPA under § 319 (MassDEP Project 14-07/319)